

 1

Chapter ?

APPLYING GENERAL USABILITY SCENARIOS
TO THE DESIGN OF THE SOFTWARE
ARCHITECTURE OF A COLLABORATIVE
WORKSPACE

Rob J. Adams, Len Bass, and Bonnie E. John
Carnegie Mellon University

Abstract: Architecturally-sensitive usability scenarios are important usability concerns
that require early consideration in software design so that architectural support
can render them easy and cost-effective to implement. Examples include
providing the ability to cancel a command, undo commands, aggregate data,
etc. This chapter reports on our experiences applying these scenarios to the
design of MERBoard, a wall-sized interactive system developed by NASA to
assist Mars Rover science teams with collaborative data analysis. We applied
the scenarios during a major redesign of the software architecture that
introduced usability as a valued quality attribute. In the process, we found that
the scenarios were well-received by developers who readily understood how
they related to MERBoard, that they applied to a collaborative workspace
despite having been initially developed for a single-user desktop system, that
they had a real impact on the architecture redesign, and that the scenario
consideration process was quick and not too onerous for any of the team
members.

Key words: software architecture, usability

1. INTRODUCTION

The usability analyses or user test data are in; the development team is
poised to respond. The software had been carefully modularized so that
modifications to the UI would be fast and easy. When the usability problems
are presented, someone around the table exclaims, “Oh, no, we can’t change
THAT!” The requested modification or feature reaches too far in to the

 2

architecture of the system to allow economically viable and timely changes
to be made. Even when the functionality is right, even when the UI is
separated from that functionality, architectural decisions made early in
development have precluded the implementation of a system with an
acceptable level of usability. The members of the design and development
teams are frustrated and disappointed that despite their best efforts, despite
following current best practice, they must ship a product that is far less
usable than they know it could be.

Over the past five years, our research group has worked to analyze the
causes of the problem described above and to develop materials to help
prevent it from occurring in common practice. This chapter describes these
materials and relates our experiences applying them to the NASA
MERBoard software development project. First, we review the relevant
prior work on bringing usability concerns to software architecture design.
Next, we describe the Usability and Software Architecture (U&SA) project’s
approach to the problem and provide an overview of the materials we have
developed. We list the questions we had about our technique prior to our
intervention with the MERBoard team, describe the procedure we went
through during our intervention, and then conclude with our answers to our
initial questions and an overview of our current ongoing work.

2. USABILITY AND SOFTWARE ARCHITECTURE

Historically, software engineers viewed usability as relevant to software
architecture design solely through modifiability (Bass, Clements, Kazman,
1998, p. 78). If the user interface was sufficiently separate from the main
application functionality, they argued, then the interface designers could
make modifications through iterative design and testing throughout the
project’s life cycle, thereby maximizing usability. These engineers
developed “separation patterns”, or generalized architecture designs that
separated the user interface into components that could change
independently from the core application functionality. The Java 2 Platform,
Enterprise Edition (J2EE) Model-View-Controller (MVC) pattern, shown in
Figure 1, is an example of one of these (Sun Microsystems, Inc., 2003).

The separation patterns are highly successful at making “screen-deep”
interface changes easy, for example, changing the size of the fonts to make
them easier to read or the order of screens in a wizard to provide a more
intuitive flow. Unfortunately, as our opening story illustrates, many
important usability concerns are difficult to add late in the development
process, even when the architecture is designed to follow one of the
separation patterns. For example, often designers discover during testing

 3

that users want to cancel long-running commands. To add this functionality
to a MVC-based architecture, however, requires changing the View to add a
cancel button, adding a Controller that runs on a separate thread (thus
possibly introducing multi-threading in a single-threaded application) to
listen for the cancel request, and modifying the command itself in the Model
so it can cleanly cancel its execution and roll back to its initial state. As a
result, the development team frequently finds that making commands
cancelable is too expensive a change to make late in the development
process. The software is released without this capability, and as a result is
less usable than the team knew it could have been had they considered the
cancellation requirement up front.

 Figure 1: The J2EE Model-View-Controller software architectural separation pattern (Sun
Microsystems, Inc., 2003). Arrows represent control flow, while boxes represent the major
software components. The layered boxes indicate the existence of several instances of the

component type.

3. THE USABILITY AND SOFTWARE
ARCHITECTURE PROJECT

Since its inception, the Usability and Software Architecture (U&SA)
project has worked to prevent the story that began this chapter. We envision
a world in which routine practice brings important usability concerns to the
table early enough that architectural limitations do not prevent them from
getting implemented. To bring this about, we have the following goals:

 4

1. Have usability recognized as a software quality attribute at
architecture design time along with other quality attributes such as
performance, maintainability, reliability, and security.

2. Understand and codify how usability impacts the architecture of
software systems.

3. Improve communication between usability professionals1 and
software developers at the critical architecture design phase.

4. Provide guidance on designing architectures that support usability
concerns.

For these goals to become a reality, we hypothesized that development
teams required materials that clearly defined how to bring the knowledge
and skills of the usability professionals and designers as well as the outputs
of their design processes into the architecture design stage of the software
development lifecycle. We developed the U&SA materials to satisfy this
need.

3.1 U&SA Materials

In brief, our materials include a list of architecturally-sensitive usability
scenarios, or generalized usability concerns that require difficult-to-change
architectural support. Each scenario is connected to a hierarchy of usability
benefits that break down usability into various components, such as
accelerating error-free portion of routine performance, preventing mistakes
and supporting problem solving which help give usability professionals a
sense of what positive impacts implementing the scenario will have on the
system’s overall usability. The scenarios are decomposed into
responsibilities of the software, which define the tasks the system must
perform to properly implement the scenario as a list of requirements. For
assistance with implementing the responsibilities, we provide architectural
patterns that describe example implementation strategies within a particular
architectural context. Finally, we describe the software engineering tactics
that we employed in developing this implementation solution.

3.1.1 Architecturally-Sensitive Scenarios

At the time of this writing, we have identified 27 architecturally-sensitive
usability scenarios. By architecturally-sensitive, we mean that support for

1 In this paper we use the term “usability professionals” to include usability specialists, human

factors specialists, ethnographers, interaction designers, graphic designers and other
members of the project team who are primarily concerned with user-centered issues as
opposed to primarily concerned with software architecture or detailed software design and
implementation.

 5

each scenario affects the functional core in a software architectural pattern
based on separation of the UI, such as the J2EE-MVC. These scenarios are
common to many interactive software systems and are not related to the
domain functionality of any one system.

We generated scenarios by (1) reading several standard HCI textbooks
and used their examples and definitions of usability to inspire scenarios (e.g.
(Gram and Cockton, 1996; Newman and Lamming, 1995; Nielsen, 1993;
Shneiderman, 1998)), (2) from our own experiences, and (3) through
discussion with colleagues. Thus, the generation process was bottom-up, not
theory-driven, systematic or comprehensive. However, it was sufficient to
demonstrate that common usability concerns had implications for software
architecture design.

The full list of scenarios can be found in Figure 9 (or see Bass & John,
2003 or Bass, John & Kates, 2001, for the scenarios themselves). A few
examples are “Supporting Undo”, “Canceling Commands”, and “Reusing
Information” (which will be our running example). Each scenario consists
of a name and a paragraph or two describing the situation in which it occurs.
The scenario for “Reusing Information” is shown in Figure 2.

Reusing Information

A user may wish to move data from one part of a system to another. For
example, an administrative assistant may need to move a large list of
business contacts from a word processor to a database. Re-entering this
data by hand could be tedious and/or excessively time-consuming. Users
should be provided with automatic (e.g., data propagation) or manual (e.g.,
cut and paste) data transports between different parts of a system. When
such transports are available and easy to use, the user’s ability to gain
insight through multiple perspectives and/or analysis techniques will be
enhanced.

Figure 2: The “Reusing Information” general scenario description.

The scenarios are intended to assist designers and usability professionals

in identifying usability concerns that have architectural implications.
Scenarios have a long history of applicability to user-interface design
(Rosson & Carroll, 1992) and many designers and usability professionals are
already familiar with them. In the spirit of Rosson & Carroll, our scenarios
are “the things users characteristically want to do and need to do” (p. 183),
but they are a lower level than the functionality-level of Rosson & Carroll’s
use scenarios, because usability issues show up at a lower level and
architectural decisions must be made to support that level of use. Scenarios
also appear in software development (albeit in different forms) in the
Architecture Tradeoff Analysis MethodSM (ATAMSM, Kazman, Klein,

 6

Clements, 2000) and in UML (Fowler, 2003) in the form of use cases,
growth, and exploratory scenarios. Our scenarios are perhaps most similar to
customer stories in Extreme Programming (Beck, 1999), as they are “one
thing the customer wants the system to do” (p. 179) that is testable and can
be implemented in one to five weeks. Thus, we hypothesized that they would
serve as an effective cross-cultural communication device.

3.1.2 Usability Benefits Hierarchy

Each architecturally-sensitive usability scenario is allocated to the
Usability Benefits Hierarchy, shown in Figure 3. The Usability Benefits
Hierarchy describes the specific usability attributes of the system that
implementing the scenario will enhance. Because there was no guarantee
that architecturally-sensitive usability scenarios would span previous
definitions of usability, we again used a bottom-up approach, affinity
diagramming (or KJ-method, Kawakita, 1982), to organize the scenarios into
topics. Although it is not directly derived from other published definitions
of usability, the Benefits Hierarchy covers the same general concepts of
efficiency, error prevention and tolerance, and user satisfaction, as other
popular usability definitions (e.g., ISO 9241-11:1998; Newman and
Lamming, 1995; Nielsen, 1993; Shneiderman, 1998). It does not cover user
satisfaction in any depth, however, neglecting concepts like physical
discomfort, for example (ISO 9241-11:1998). However, it includes benefits
relating to reducing the impact of system errors that other usability
definitions do not include.

 7

Increases individual user effectiveness
Expedites routine performance

Accelerates error-free portion of routine performance
Reduces the impact of routine user errors (slips)2

Improves non-routine performance
Supports problem-solving
Facilitates learning

Reduces the impact of user errors caused by lack of knowledge
(mistakes)

Prevents mistakes
Accommodates mistakes

Reduces the impact of system errors
Prevents system errors
Tolerates system errors

Increases user confidence and comfort
Figure 3: The Usability Benefits Hierarchy. For each scenario, the U&SA technique describes
which specific benefits (the “leaves” of the hierarchy) apply and which do not. An example is

shown in Figure 4.

For each scenario, the U&SA technique describes which specific benefits
(the “leaves” of the hierarchy) apply and which do not. Figure 4 contains
the allocation of the “Reusing Information” scenario to the Benefits
Hierarchy. For each benefit allocation, we include a short justification for
why the benefit applies to this scenario.

3.1.3 Responsibilities3

Each scenario package includes a list of system responsibilities that can
serve as a specification to developers, detailing what the system must do.4
Like any specification, the responsibilities are intended to describe the
functions of the system without dictating a particular implementation. The
responsibilities for “Reusing Information” are divided into two sections:
manual reuse (i.e., copy&paste) and automatic reuse (data propagation).
These responsibilities are shown in Figure 5.

2The distinctions between errors, slips and mistakes in the Usability Benefit Hierarchy follow

Norman, 1983.
3 Responsibility is a term from object-oriented design that means "an obligation to perform a

task or know information" (Wirfs-Brock & Mckean, 2003, p. 3).
4 At the time of the intervention with the NASA development team, only 6 scenarios out of 27

included this list of responsibilities. Work continues to fill these in for every scenario.

 8

Increases individual effectiveness
 Expedites routine performance
 Accelerates error-free portion of routine performance

In most cases, it is more efficient for systems to transport information from place
to place than it is for users to re-enter this information by hand. Thus, systems that
support information reuse accelerate routine performance.

Increases individual effectiveness
 Expedites routine performance
 Reduces impact of slips

Automatic data transportation and/or re-entry require fewer human actions (e.g.,
typing, mouse movements) than re-entering data by hand. Since performing more
actions introduces more opportunities for error, systems that support information
reuse can prevent slips.

Increases individual effectiveness
 Improves non-routine performance
 Supports problem-solving

When users can import and export data from one place to another easily, they may
try different applications to gain additional insight while solving problems. For
example, a user may export data from a traditional text–based statistics application
to a data visualization application. Thus, systems that support information reuse
facilitate problem-solving.

Figure 4. Allocation of “Reusing Information” to the Usability Benefits Hierarchy. A system

that supports reusing information impacts the benefits listed above, but has little or no
influence on the other benefits in Figure 3.

Manual Reuse Responsibilities
R1. Provide information to be reused (from Information Source)
R2. Store information to be reused (in Information Repository)
R3. Provide feedback on the stored information
R4. Retrieve stored information (from Information Repository)
R5. Receive information (into Information Sink)
R6. Provide feedback on the retrieved information

Automatic Reuse Responsibilities
R1. Know which data to store and retrieve from repository (e.g., via a data

dictionary)
R2. Provide information to be reused (from Information Source)
R3. Store information to be reused (in Information Repository)

(a) Retrieve stored information on request
or

(b) Broadcast newly stored information
R4. Receive information (into Information Sink)

Figure 5: Responsibilities for Reusing Information

 9

3.1.4 Architectural Patterns

To provide more guidance to software developers, we have included a
sample architectural pattern in each U&SA scenario package that fulfills the
implementation-independent responsibilities. These patterns are similar to
software patterns (Gamma, Helm, Johnson and Vlissides, 1995) insofar as
they describe generalized solutions that could be realized in a wide variety of
systems, but most are at a level of abstraction similar to software
architecture patterns (Buschmann, Meunier, Rohnert and Sommerlad, 1996).

Because the architectural patterns that support usability are always
situated within an overarching architecture (usually a separation-based
architecture discussed above), our examples must be given with respect to
some overarching architecture. We have chosen to situate our examples
within the J2EE Model-View-Controller architecture because that pattern is
very popular in modern system development (Figure 6). However, the
concepts illustrated in each example can be applied to other overarching
architectures.

Note that the pattern defines generic, high-level components and the
interactions between them. Each responsibility, listed in the previous
section, is allocated to a particular component, as described in Figure 7.

Figure 6: Sample architectural pattern for Reusing Information Manually.

 10

Allocation of Responsibilities for Reusing Information
Manually

View
• Accept copy/paste commands from the user (R1)
• Send data to the Controller (R1)
• Provide feedback about the copied data. (R3)
• Provide feedback about the pasted data. (R6)

Controller
• Send data to the Information Reuse Repository (R1)
• Send information about the copy operation to the View. (R3)

Model
• Receive data from the Information Reuse Repository (R5)

Information Reuse Repository (which is a Model)
• Receives data to be reused, e.g., from the Controller in response to a copy request

(R2)
• Stores information to be reused (R2)
• Accepts commands to retrieve stored information, e.g., paste to the Model (R4)
• Dispense information to be reused to requesting Models. (R4)
• Provide information to the View for user feedback about the repository contents.

(R3)
Figure 7: Allocation of Responsibilities for Reusing Information Manually. This figure
describes the mappings between the Reusing Information Manually responsibilities (in

parentheses) and the components shown in the sample architectural pattern in Figure 6. Some
responsibilities require participation by more than one component as indicated by their labels

appearing in multiple components.

3.1.5 Software Tactics

The last part of a U&SA scenario package includes a list of the
architectural tactics employed by the sample architectural pattern to
implement the scenario. These architectural tactics, design decisions that
influence quality attributes like usability or performance, were developed to
codify best-practice solution techniques for common software design
problems (Bass, Clements, & Kazman, 2003). The software tactics hierarchy
for usability appears in Figure 8.

In the case of Reusing Information Manually, the sample architectural
pattern uses the data intermediary tactic to implement the information reuse
repository component. Most of the architecture examples for the other
usability scenarios employ multiple tactics to implement a solution.

 11

Software Architecture Tactics Hierarchy
Localize modifications
• Hide information
• Separate data from commands
• Separate data from the view of that data
• Separate authoring from execution

Maintain multiple copies
• Data
• Commands

Use an intermediary
• Data
• Function

Recording
Preemptive scheduling policy
Support system initiative
• Task model
• User model
• System model

Figure 8: Software Architecture Tactics Hierarchy. For each scenario, we list the tactics used

in our sample solution pattern.

3.1.6 Benefits / Tactics Matrix

In addition to our list of scenario packages, we developed a tool to help
apply the U&SA materials to a development effort: the Benefits / Tactics
Matrix, shown in Figure 9.

When a project team wishes to determine which scenarios are important
for their system, they first assess which usability benefits are critical for
fulfilling their usability goals. Then they read down the column of each
benefit and find the scenarios they must consider during the architecture
design phase.

After the development team has determined that their architecture design
includes support for all the usability scenarios they have deemed critical, or
if an architecture is already in place, the team may use the matrix to identify
additional scenarios that may be easy to support. They enter the Benefits /
Tactics Matrix through the software engineering tactics they have already
employed and read across the rows to identify which scenarios may be easy
for them to support with their existing design. Even though these scenarios
are not critical, the team may wish to consider implementing them if the
architecture they have chosen will support them without much additional
effort.

 12

KEY

1 Aggregating data 10 Providing good help 19 Predicting task duration

2 Aggregating commands 11 Reusing information 20 Supporting comprehensive searching

3 Canceling commands 12 Supporting international use 21 Supporting Undo

4 Using applications concurrently 13 Leveraging human knowledge 22 Working in an unfamiliar context

5 Checking for correctness 14 Modifying interfaces 23 Verifying resources

6 Maintaining device independence 15 Supporting multiple activity 24 Operating consistently across views

7 Evaluating the system 16 Navigating within a single view 25 Making views accessible

8 Recovering from failure 17 Observing system state 26 Supporting visualization

9 Retrieving forgotten passwords 18 Working at the user’s pace

Figure 9: The Benefits / Tactics Matrix. The usability benefits are listed across the top of the
table, the architectural tactics are listed down the side. The numbers in the cells refer to the
specific scenario packages that give the column’s benefit and employ the row’s tactic. An
additional scenario, Supporting Personalization, was added after this matrix was created.

3.2 Prior Uses of U&SA Materials

The U&SA materials described above had been developed and
disseminated over the course of more than five years. Since we began work
on this project in 1999, we have run several industry-focused tutorials on
applying our materials (Bass, John, Juristo, & Sanchez-Segura, 2004; John,
Bass, Juristo, & Sanchez-Segura, 2004; John & Bass, 2002, 2003), presented

Accelerates
error-free

portion

Reduces
impact of slips

Supports
problem-
solving

Facilitates
learning

Prevents
mistakes

Accommo-
dates mistakes

Tolerates
system errors

Prevents
system errors

Hide information
4, 13, 14, 15,

20, 23
4, 13, 20 4, 13, 20 4, 13, 20 9, 14 23

Separate data
from the view of
that data

12, 13, 24, 25 12
12, 13, 22, 24,

25, 26
12, 13, 24 12, 13, 22, 24 12 12

Separate data
from commands 1, 24, 25 5, 17

5, 17, 24, 25,
26

5, 17, 24 1, 5, 17, 24 1, 5, 17 17

Separate authoring
from execution 1, 2 2 1, 2 1, 2

Data
16

Commands
2 2 22 2, 22 2

Data
7, 11, 14 11 7, 11 14

Function
6, 14, 20, 27 27 6, 20 20 20, 27 14 6 27

2, 7 2, 3, 21 3, 7, 21 2 2, 3, 21 3, 8

15, 18, 19 3, 5, 17, 18 3, 5, 10, 17 5, 10, 17 5, 17, 19 3, 5, 17 3 17, 18

Task model
18, 19 5, 17, 18 5, 10, 17 5, 10, 17 5, 17, 19 5, 17 17, 18

User model
12, 18 5, 12, 17, 18

5, 10, 12, 17,
22

5, 10, 12, 17 5, 12, 17, 22 5, 12, 17 12, 17, 18

System model
4, 6, 19, 23 3, 5, 17 3, 4, 5, 6, 17 4, 5, 17 4, 5, 17, 19 3, 5, 17 3 6, 23 17

Support system
initiative

Recording

Preemptive scheduling policy

Use an
intermediary

Increases
confidence
and comfort

Reduces impact of system
errors

Localize
Modifications

Maintain multiple
copies

Architectural
Tactics

Expedites routine performance

Increases individual effectiveness

Improves non-routine
performance

Reduces impact of mistakes

Usability
Benefits

 13

our work at usability and software engineering conferences,5 and published
information on the U&SA materials in Software Engineering Institute
technical reports and software engineering magazines. We have also applied
the information in the scenario packages informally in a few architecture
design reviews. For example, we used a few of the scenarios as part of the
ATAMSM on a large commercial information system (Bass & John, 2003).
However, the full set of scenarios had never been explicitly applied to a real-
world software system undergoing a major architectural redesign.
Therefore, although our materials appear useful, we still needed to subject
them to the test of real-world use.

4. QUESTIONS FOR A REAL-WORLD CASE

We set out to test our materials by using them as the main discussion
points for an architectural review of a real-world software project with
significant architectural design problems and an emphasis on usability.
Although we recognized that no single case could give us definite,
generalizable answers to all our questions, we hoped to get feedback,
suggestions, and new ideas that would help us refine our materials in
preparation for more rigorous empirical studies. We set out with three
specific questions, detailed below.

Would a real-world software development team accept the U&SA
materials as the main discussion point of an architecture design
meeting?

Traditionally, development teams have not considered usability as a
software quality attribute at the architecture design phase. Usability issues
are introduced much later in the life cycle through user testing and design
iteration and earlier in the life cycle through ethnography, contextual
inquiry, and other field techniques. Our experience has been that usability
professionals are frequently not invited to architecture design meetings, and
when they are, they feel they have little to contribute because they have no
training in software architecture design or its implications for producing
usable systems. We created the U&SA materials to a framework within
which usability professionals could contribute to a software architecture
design meeting.

We had successfully introduced our scenarios for enhancing usability as
a quality attribute alongside more traditional architectural quality attributes
such as performance, security, and reliability during broad architectural

5 For a full list of references, see http://www.uandsa.org

 14

reviews. However, as of mid-2002, usability had never been the main topic
of discussion in a large-scale, real-world architecture design meeting. We
were interested in discovering whether a development team confronting a
larger software architecture design effort would accept usability as an
architectural quality attribute and whether both the developers and usability
professionals on the team would be able to use our scenarios to participate in
a discussion about the system’s proposed architectural design.

Would usability scenarios generated by considering single-user-at-a-
desktop apply to a real-world design problem that may involve other
domains (such as collaborative workspaces, web-based environments,
etc)?

The U&SA scenarios were initially developed through literature
investigations and examinations of usability problems in common desktop
applications and operating system interfaces. Most of these “single-user-at-
a-desktop” applications followed the classic WIMP paradigm, executed on a
single machine only, and did not support multiple-user collaboration. Single-
user-at-a-desktop does not cover all possible environments that have
potential software architecture and usability issues, however. Modern
systems are designed to support domains with requirements that span a wide
variety of paradigms, including collaborative computer-supported
cooperative work environments, real-time embedded systems, ubiquitous
computing, and so on. We hoped to discover how many of our scenarios
would apply in these other environments, which are different in many
respects from the one we had in mind while developing the scenarios.
Although no single case can cover all these environments, applying our
materials to a system in any environment off the desktop is a step toward
answering this question.

Would our architecture design suggestions contribute to a real design
project?

Ultimately, the U&SA materials are designed to improve architectural
decisions made early in the life cycle with respect to their support for
usability. Thus, the purpose of the scenarios is to generate design
suggestions for software architectures which, when followed, help to prevent
the “We can’t change THAT!” problem described in the introduction. In
applying our materials to a real-world development project, we wanted to
discover whether the scenarios could, in fact, suggest design changes to the
proposed architecture of a real software system so we could learn whether
our materials were effective at all. We also hoped to discover whether real

 15

development teams would find these suggestions compelling enough to
change their architecture design.

With these questions in mind we began to collaborate with the
development team of the MERBoard project, a software development project
at NASA Ames Research Center that is a participant in the High
Dependability Computing Program6. As a participant in the HDCP, the
MERBoard development team agreed to allow intervention by software
engineering researchers for the purpose of testing new methods and tools.

5. THE MERBOARD PROJECT

The MERBoard Project is a software development effort by NASA Ames
Research Center7 to create a collaborative tool to support the engineers and
scientists on the Mars Exploration Rovers (MER) mission.8

Two robotic probes landed on Mars in January 2004. The MER mission’s
scientific goals include searching for and characterizing a wide range of
rocks and soils that hold clues to past water activity on Mars. The MER
collects soil samples and other geological data from the Martian surface and
transmits this information to NASA scientists back on Earth for analysis.
Each MER is solar powered; during the Martian day, it collects data based
on instructions sent to it from Earth. When night comes, it transmits this
data back to Earth and goes into a low-power, low-activity mode until the
sun rises in the morning. During the Martian night, scientists back on Earth
must analyze the data received from the MER to determine what instructions
to send to the robot in the morning. For instance, if the data indicate that
there is a high probability that an old water channel might lie to the left,
scientists must send orders to the MER to investigate that area in the
morning. The scientists must be able to analyze the data and make decisions
under strict deadlines, so that the MER does not sit idle.

To facilitate communication, the scientists work in a collocated, “war-
room” style environment. Their initial technology support consisted of
desktop and laptop computers running a variety of software applications,
projection screens, and paper flip charts to facilitate group thinking and
discussion. The MERBoard Project introduced new technology to support
collaborative activities like annotating images and strategic planning with

6 For information about the HDCP, see

http://www.cebase.org/HDCP/frames.html?/HDCP/aboutus.htm
7 For information about MERBoard, see http://ic.arc.nasa.gov/story.php?sid=104
8 For information about the MER mission, see

http://marsrovers.jpl.nasa.gov/home/index.html).

 16

storage, retrieval and sharing capabilities (Tollinger, McCurdy, Vera &
Tollinger, 2004).

The MERBoard is a wall-sized collaborative workspace intended to
facilitate shoulder-to-shoulder collaboration (Figure 10). The physical
hardware consists of a large touch-sensitive plasma display. The software
consists of four major components: a web browser for on-the-fly internet
research, a collaborative whiteboard for creating and annotating
visualizations of data, a remote login (VNC) client for connecting the
MERBoard to the scientists’ desktop and laptop computers, and MERSpace,
a shared document repository for saved MERBoard sessions.

Usability had always been a key goal for the MERBoard project; their
slogan was that the final system had to be to be “Palm Pilot simple”. The
MERBoards are intended to enhance the productivity of the scientists, who
have a wide variance in their comfort with new technology, are too busy to
spend much time becoming familiar with the tool before the mission, and
have tight deadlines during the mission. Thus, the system must be both easy
to learn and efficient to use, two key aspects of usability.

Figure 10: A photograph of the MERBoard’s whiteboard screen (MERBoard User’s Guide,
NASA Ames Research Center, September 10, 2003, by permission).

 17

5.1 MERBoard Project Timeline

The MERBoard team has operated in several phases with defined
deliverables (Figure 11). For the first phase, beginning in Fall 2001, the
MERBoard project team conducted ethnographic field studies and user
research to determine the real needs of the engineers and scientists. They
then began development on a working prototype that could be user tested in
the 2002 summer field tests with other MER technology. After those field
tests were completed, the team took the issues identified in the user tests and
began a ground-up rewrite effort, this time with an emphasis on sound
architectural design for extensibility, performance, and reliability. They
began with an architecture redesign meeting to set their goals for the January
2004 landing of this MER mission and for the 2009 MER mission as well.
Our intervention began at the September 2004 architecture review meeting
and continued through teleconferences with a MERBoard developer.

Figure 11: The MERBoard development timeline. We applied the U&SA materials during

the architecture redesign phase at the September 2002 architecture review for usability
concerns and follow-on teleconferences.

6. U&SA’S APPLICATION TO MERBOARD

Since MERBoard had articulated usability as a primary goal of their
system from the beginning, we proposed that it be considered as an
architectural quality attribute along with their other stated attributes of

MERs land
on Mars.
Data
analysis
with
MERBoard
begins.

 18

extendibility, performance, and reliability. Since classic architecture design
and analysis techniques do not address usability as a quality attribute, we
offered to help the MERBoard team apply our U&SA materials to their
proposed architecture redesign.

Our intervention took place over the course of four meetings: a face-to-
face meeting where the lead architect walked through an overview of the
proposed architecture redesign, a face-to-face meeting to introduce the
MERBoard team to the U&SA materials and prioritize their usability goals,
a teleconference with the front-end developer to review his understanding of
the U&SA scenario packages, and a second teleconference with the front-
end developer to review his application of the scenario packages to the
details of his proposed architecture design.

6.1 Face-to-face meetings: Architecture overview and
U&SA materials

The first meeting was an architecture overview for the MERBoard
project team. It took place in the MERBoard project lab and involved the
entire MERBoard project team, including the project manager, the usability
professionals (including an ethnographer, several cognitive modelers, HCI
specialists, and a graphic designer), the lead architect and several software
developers. The second and third authors were primarily observers at this
architecture overview, although we were invited to ask clarifying questions.
The lead architect of the MERBoard system presented the proposed
architecture redesign and discussed technical concerns such as what library
to use to handle gesture input, how to structure the components to support
future extensibility, etc. The project manager and software developers asked
questions; the second author asked a few clarifying questions; the usability
professionals were generally silent listeners. The meeting took
approximately four hours.

There was then a break for dinner and the majority of the MERBoard
team returned to hear us describe the U&SA materials and to prioritize the
scenarios for the MERBoard release (one designer had a previous
commitment and could not return). We gave a short overview of the U&SA
motivation and approach, and then presented our list of scenarios that form
the core of our scenario packages. We led the team through a review of their
architectural requirements by going over each of our twenty-seven scenarios
in turn. For each scenario, the team decided whether:

• The scenario applied to the current, January 2004 target (i.e., it must
be supported by the redesigned architecture and implemented in the
current release).

 19

• The scenario applied, but they did not anticipate needing it until the
distant 2009 release (i.e., it was safe to delay).

• The scenario did not apply to MERBoard.
In this meeting everyone, including the usability professionals,

contributed to the discussion. Unlike the previous architecture overview, the
entire team debated the needs of their users and what impact this would have
on their architectural requirements.

By the end of the meeting, the design and development team had found
that 25 of the 27 scenarios were applicable to MERBoard. Seventeen of
these scenarios were considered essential for the January 2004 release and
were targeted for the next field trial. Eight were determined less critical and
were postponed for the longer-term release.

Since 93% our scenarios were judged applicable by the development
team, we conclude that they were highly relevant to MERBoard, a real-
world project with a significant architecture design challenge. Moreover, the
team accepted our scenarios as a means of discussing usability as a software
quality attribute that applied to their system’s architecture. Even more
encouraging was the nature of the discussion our technique fostered in the
team; the usability experts and software experts had common ground on
which to discuss critical design decisions at a sufficiently early stage for
changes to be made.

6.2 Teleconference to review U&SA materials

At the initial face-to-face meetings, the MERBoard management
determined that most of the relevant U&SA scenarios applied to the design
of the front-end of MERBoard, as opposed to the back-end (or server-side).
Therefore, we arranged follow-up discussions with the front-end architect
and developer (hereafter, FED). It was arranged that these discussions would
be via teleconference because the authors and the MERboard team were
separated by 3000 miles and travel budget for both groups was limited. We
provided FED with a copy of our technical report on the U&SA scenarios
(Bass, John, and Kates, 2001) as well as the notes packet to our 2002 CHI
tutorial on applying the U&SA technique (John and Bass, 2002). FED read
these materials during a four-day period that spanned a weekend, while he
redesigned the front-end architecture.

The following week, we had a teleconference with FED to get his
reaction to the scenario packages and our technical report. There were four
participants in this teleconference: FED (at NASA Ames in California),
architecture expert Len Bass, usability expert Bonnie John, and research
associate Rob Adams (at Carnegie Mellon University in Pittsburgh,
Pennsylvania). We solicited the FED’s opinions on the patterns, whether

 20

and how he felt they applied to MERBoard’s architecture design, and
clarified those issues about which he was uncertain. We discussed his
general impressions of the U&SA materials as a whole, and then went
through each scenario package in order to get his specific impressions on
those that the team had decided were critical for the current release. FED
described to us how he foresaw each scenario package influencing the
technical decisions he was facing. The entire discussion lasted
approximately one hour.

FED’s reactions to the U&SA materials were primarily positive.
Referring to the U&SA scenario packages as a whole (i.e. the scenarios,
usability benefits, architecture patterns and software engineering tactics), he
said

“It's nice to explicitly describe it like this. I mean I managed to avoid any
actual classes that actually taught architecture, this kind of design
patterns, you know software engineering. So this is basically how I
would write... I think I'd write [the architecture like this] anyway but it's
definitely is nice to have it laid out and drawn up and written up for you.
And then you can say okay this is how we're going to do it. As opposed
to here's my, sort of, thoughts on the matter.”

“…it's also nice just keeping a list [of scenario packages] next to me so
when I'm doing my design decision I can glance at it to make sure, you
know, I haven't forgotten anything.”

About the architecture patterns associated with each scenario, FED said
they were “very clear” even though he did not have experience in software
patterns or architecture patterns prior to using the U&SA materials. About
applying them to the MERBoard front-end architecture redesign he said,

“So, they're pretty interesting…Of the ones that tools actually used, the
patterns, some patterns were somewhat useful others weren't... [some
patterns] didn't really apply. And I guess some were sort of already
there.., [the pattern in the U&SA documents] described something that
already exists [in the MERBoard architecture]. So it's not actually wrong,
it's confirmation that we're doing something right.”

For example, regarding the Aggregating Command Scenario, FED
judged the proposed architecture for the MERBoard’s whiteboard as “very
very similar to this pattern … the grouping manager and command cluster …
have this separation described in the pattern.”

Unsolicited by the researchers, FED mentioned that having a separate list
of responsibilities fulfilled by the pattern was helpful (such a list was
available for six patterns at the time of this intervention, in John & Bass,
2002).

 21

“…the breakdown of responsibilities was quite nice, I felt. It wasn't
critical but it definitely made it a lot easier to think about.”

On a less positive note, when speaking about the software engineering
tactics, FED was polite, as would be expected in such a discussion with
researchers who developed the materials under discussion. He said they were
“probably definitely helpful”, but could not think of any concrete instances
of how these tactics were useful to him. He thought they would be more
useful if they were integrated into the description of the example architecture
patterns as “key ideas” used in each pattern.

In summary, FED expressed that he was able to understand the U&SA
materials and connect them to the MERBoard front-end architecture he was
designing. We arranged to have an additional teleconference once he had
documented his architecture design and review that design with respect to
the scenarios.

6.3 Teleconference to specifically apply U&SA materials

In advance of our second teleconference (with the same participants),
FED sent us a diagram of his proposed architecture design. We went
through all the scenario packages that the design and development team had
deemed necessary for the 2004 release and discussed how the proposed
architecture supported each scenario package. The architecture expert and
FED each proposed changes to the diagramed architecture in light of the
considerations raised by the scenario packages, then discussed and decided
on those changes. This meeting ran for approximately one hour.

6.3.1 General impressions of the application of U&SA materials

The discussion in this teleconference was a collaboration between FED,
who was an expert on MERBoard but had no formal training in software
architecture (as had been uncovered during the first teleconference), and the
U&SA researchers, primarily the software architecture expert. The
conversation reflects this collaboration in that 46% of the words were uttered
by FED, indicating that it was not a “lecture” by the architecture expert, who
uttered 44% of the words. Had it been a lecture by the architecture expert, a
larger percentage of the words would have been uttered by that researcher.
Nor was it a “seeded” design review where the architecture expert throws
out an idea and the domain expert then dominates, or a larger percentage of
the words would have been uttered by FED. Since the development team had
already decided which scenarios were important to the MERBoard, the
usability experts’ input to this discussion was small (5% of the words),
primarily asking clarifying questions in order to take notes and revise the

 22

architecture diagram. The more junior research associate primarily asked
clarifying questions (5% of the words).

In the previous teleconference, FED expressed confidence in his
understanding of the U&SA materials and in this teleconference he seemed
readily able to apply the general scenarios to his specific architecture design
problem; each scenario immediately brought to mind a specific technical
challenge he was facing and he was able to use these scenarios to brainstorm
potential implementation solutions. However, FED seemed less able to
apply the component-level patterns we provided in the technical report to
MERBoard without additional support from the U&SA team, as evidenced
by the large number of changes we made during this review, described
below. In one respect this shows that U&SA materials and expertise can
have a influence on architecture design. On the other hand, this is evidence
that the U&SA materials need to be improved for them to become a stand-
alone resource for software architects in the real world.

Moving from general impressions to specific content of the
teleconference, the next section details the proposed MERBoard front-end
architecture and the changes we made during this teleconference.

6.3.2 Results of the U&SA Intervention on the MERBoard
Architecture

The architecture diagram FED sent us at the beginning of the second
teleconference is shown in Figure 12. The architecture that resulted from the
discussions during that teleconference is shown in Figure 13. The
components in Figure 13 and their responsibilities are as follows.

• The GUI contains all the user interface widgets that appear on the
MERBoard and handles user input processing logic. The GUI is
implemented using the Java Swing user interface toolkit.

• The Dispatcher receives user actions from the GUI and either
handles them itself or forwards them to the appropriate component
for processing.

• The Administrator handles all user management and
personalization functions.

• The Selector provides a number of utilities relating to the display
and manipulation of user and personalization information, thereby
acting as a bridge between the user interface and the Administrator.

• The Save / Restore Interface takes snapshots of the MERBoard’s
current state and sends them to the server over the network. This
allows the MERBoard to be restored in case of a system crash,
minimizing data loss. It also handles manual requests for saving and
restoring data.

 23

• The Recorder logs usage data for later analysis by the usability
professionals to identify usability breakdowns and areas that need
improvement. These data are intended to feed into future
collaborative systems developed by NASA.

• The Network Interface provides an abstraction layer for
communication with the remote server component on which the
MERBoard’s data is saved. The remote server is not shown on the
diagram.

• The Plugins implement specific functionality extensions to the
MERBoard. The plugins developed by the MERBoard team include
the whiteboard, the web browser, the VNC-based plugin for
connection to a remote computer, and a specialized tool for the
Long-Term Planning group called the “Sol Tree Tool”.

Figure 12: MERBoard architecture diagram proposed by FED prior to the second
teleconference. The developer created this diagram after being exposed to the U&SA
materials, but before consulting with U&SA researchers in detail about each scenario.

 24

Figure 13: The modified MERBoard architecture diagram, developed collaboratively by the
FED and U&SA researchers during the teleconference where the proposed architecture was
discussed with reference to the U&SA scenarios relevant to the January 2004 release. The

changes made are labeled C1 through C6 (these labels do not appear in the architecture
diagram used by the developers).

Comparing Figures 12 and 13, it is easy to see that almost every

component and communication line was either modified or added because of
the detailed discussion of the U&SA scenarios. We audiotaped the
teleconference, which allowed us to identify when these changes were made
in the discussion and determine what information content led to each change.
Below, we examine each change by considering whether the U&SA scenario
packages directly caused the change or if other aspects of this architecture
walkthrough steered the design. Figure 13 labels each change, C1 through
C6.

The first modification (C1) involved the addition of a representation of
the MERBoard user to the diagram, thus giving a sense of where the user fits
into the system. This constituted a simple omission on FED’s part, a
common occurrence when documenting complex systems from a software
engineering point of view. The usability expert suggested the addition to
keep the user evident in the architecture documentation. It is possible that
any review of the diagram by an independent person taking a human-

 25

centered approach could have turned up this omission; no special U&SA
scenario package can be credited with this addition.

The next modification (C2) involved altering the communication paths
between the Plugins, the Dispatcher, and the other components. The intent
of this modification was to simplify the communication between the Plugin
and the worker components (the Administrator, Save / Restore Interface, and
Recorder) so that these potentially heavy communication channels would not
all have to be routed through the Dispatcher. This change arose from a
general discussion of the architecture. The architecture expert suggested this
change to improve the overall conceptual integrity of the MERBoard design
(a quality attribute he called “buildability”). There was no explicit reference
to any U&SA scenario package.

The addition of the “Reuse Repository” in the Dispatcher (C3) addresses
the need for an explicit sink for copied and pasted data (commonly known as
a clipboard) and also speaks to the need for defined mechanisms for
handling and transporting clipboard data between components. This addition
arose as the result of a long discussion of U&SA’s Reusing Information
scenario package. The front-end developer explained his implementation of
information reuse in the MERBoard and the merits of various alternatives
with the architecture expert. Unlike the previous two examples, this change
arose directly from the discussion of U&SA materials.

C4 is an annotation on the diagram to document the responsibilities of a
“good” plugin, that is, a plugin that supports the level of usability required
by the MERBoard developers and its users. Since third parties often develop
the plugin components, comprehensive documentation of any architectural
decision to allocate responsibilities to a plugin must be provided so that
these parties realize what conditions their code is expected to handle. This
annotation came from a discussion of U&SA’s Supporting Undo, Working
at the User’s Pace, and Observing System State scenario packages. Unlike
the previous change, this change emerged from the discussion of several
scenario packages rather that just one. This suggests that the combined
effects of several scenario packages may produce considerations that do not
arise when those scenario packages are considered singly.

The Plugin Services component (C5) was added in response to a
discussion of the U&SA scenario Operating Consistently Across Views.
This was the first scenario discussed to bring up the idea of having different
views on the same data, therefore, it initiated a discussion of views
themselves. The architecture expert connected this discussion to preliminary
ideas about an object model presented at the first face-to-face meeting. He
noted that there would be a lot of commonality between functions that
manipulate aspects of the object model and proposed that common code
inherited into the plugins would be better than making each plugin

 26

implement these common functions themselves. FED agreed and added the
Plugin Services component with the View Manager as an example.

Finally, the E-mail Manager (C6) was added shortly after the Plugin
Services component as the discussion of multiple views continued. The
MERBoard designers had envisioned that scientists may collaborate for a
while using MERBoard, then analyze data in various ways on their own
laptop or desktop computers, depending on individual interests. Thus, they
expected that data on the MERBoard would have to be transferred to other
computers. While discussing other aspects of multiple views, FED explained
that this may be done through e-mail. As soon as he mentioned using e-mail,
he noticed that he had not included a component representing the e-mail
manager and added it. Although the e-mail function is not specifically tied to
maintaining multiple views of data (the discussion underway), its omission
was discovered as a direct consequence of discussing U&SA scenarios.

In summary, many changes were made to the proposed architecture to
better support the usability goals of the MERBoard team. These changes
included changing communication paths, adding components, and
documenting aspects of the architecture not represented by lines and boxes.
The first few changes were not linked to any specific U&SA scenario and
might have been made during any architecture design walkthrough that
included a usability expert (not usually present in current practice) and an
architecture expert. However, when we examined each scenario in turn, we
made some changes that specifically supported the scenario under
consideration. Some changes related to only one scenario; others to a
collection of scenarios that triggered a single solution. These cases clearly
show that the U&SA materials influenced the final design of the MERBoard
architecture.

7. SUMMARY OF FINDINGS

As we’ve shown above, the application of our U&SA materials to
MERBoard’s architecture enjoyed a measure of success. Now, we revisit
the questions, expressed earlier, that we hoped a real-world application
would be able to answer.

Would a real-world software development team accept the U&SA
materials as the main discussion point of an architecture design
meeting?

We found that the entire MERBoard design and development team was
not only willing to accept U&SA as the main discussion point, but actively

 27

participated in a three hour review of their system based around our scenario
packages. Moreover, we found that the discussion of our scenario packages
included the participation of usability professionals who were silent during
the conventional architecture presentation. This is encouraging, for it
provides evidence that U&SA helps to improve communication between the
software development and usability communities, one of its stated goals.

Would usability scenarios generated by considering single-user-at-a-
desktop apply to a real-world design problem that may involve other
domains (such as collaborative workspaces, web-based environments,
etc)?

The MERBoard is a wall-sized collaborative workspace intended for use
in a co-located, war-room style environment. It is a far cry from the single-
user-at-a-desktop paradigm that we originally considered when developing
the list of scenario packages, yet the MERBoard team still identified 25 of
our 27 scenarios as applicable to their project; 17 of these being critical for
the 2004 MER mission. Moreover, the team was able to give concrete
examples of how the scenarios were realized for their users, often from their
experiences performing direct observations of user behavior in the field
trials.

We are encouraged to discover that so many scenarios were applicable in
a CSCW application, since it implies that the scope of our technique lies
beyond the single-user-at-a-desktop paradigm. Although we currently do
not know how far our materials’ range extends, this case provides evidence
that they can be useful in at least one additional domain.

Would our architecture design suggestions contribute to a real design
project?

As we have shown, the proposed architecture redesign for the MERBoard
was heavily influenced by the front-end developer reading the U&SA
documents and participating in an architectural review with the research
team. The front-end developer felt that most of the materials were clear and
relevant to his design. He especially liked the list of responsibilities the
software must fulfill to support a usability scenario. During the detailed
review, a majority of the architecture’s components were modified to take
into account the issues raised by U&SA scenario packages. U&SA clearly
contributed to the architecture design of MERBoard.

However, we found that the architecture design patterns were less usable
for the front-end developer than we had hoped and that he seemed to think
the software tactics were irrelevant to his design. We have thus changed our
approach with respect to these patterns, as discussed in the next section.

 28

8. ONGOING WORK

Our ongoing work was influenced in several ways by our findings from
applying U&SA materials to the MERBoard architecture redesign. In
particular, we have redesigned our scenario packages and we are testing the
efficacy of the different components of those packages in a more controlled
setting.

We have found, both through our work with MERBoard and our
experience teaching the U&SA materials, that the architecture design
patterns we provide (Bass, John & Kates, 2001) as part of the scenario
package are often insufficient for development purposes. Most developers
find that our patterns are either not sufficiently general to be applicable to
their system, or are so general that they have difficultly seeing how to apply
them to their system. At the same time, both the MERBoard front-end
developer and the participants in recent tutorials and classes find the
architecture-independent lists of responsibilities that must be fulfilled to
support a scenario extremely useful. This feedback led us to distinguish
between architecture-independent responsibilities, architectural support for
those responsibilities, and overarching architectural decisions related to
aspects of the system other than usability. We have redesigned our scenario
packages around this distinction, emphasizing responsibilities and rationale
for the responsibilities (John, Bass, Sanchez-Segura, and Adams, 2004), in
packages that are called usability-supporting architectural patterns
(USAPs).

Encouraged that USAPs will be useful in software architecture design,
we have collaborated with researchers on the European Union project called
STATUS.9 Some members of STATUS have also investigated the
relationship between usability and software architecture (e.g., Bosch &
Juristo, 2003; Folmer, and Bosch, 2004; Folmer, van Gurp, and Bosch,
2003; Juristo, Lopez, Moreno, and Sanchez-Segura, 2003). We expect that
our combined effort will produce more USAPs than our research group
could alone.

To investigate whether different pieces of the scenario packages
contribute to the quality of a resulting architecture design, we are currently
conducting a controlled laboratory experiment with software architects. The
experiment compares three conditions: (1) only a scenario is given and the
software architect is free to make architecture design changes as he or she
sees fit, (2) giving both a scenario and the list of architecture-independent
responsibilities to support that scenario, and (3) giving a scenario, the list of
responsibilities, and a sample architecture pattern expressed in UML

9 See the STATUS website http://www.ls.fi.upm.es/status/

 29

component and sequence diagrams. Preliminary analyses show a significant
improvement in the number of responsibilities considered by software
designers when using responsibilities and UML diagrams over the scenario
alone, and a trend toward improvement when using the list of responsibilities
alone (Golden, John & Bass, 2005). We are continuing the analysis to assess
quality of the architecture design. These data provide guidance to support
future development of USAPs.

Finally, we realize that this chapter provides just part of the story about
the usefulness of considering usability in architecture design. This chapter
stops at an informal analysis of the creation of an architecture component
diagram that supports the desired usability aspects of a system. However,
there are many other questions to answer in the full development process.
Did support for the scenarios get implemented at all? Was the architecture as
designed sufficient to support the actual implementation of the scenarios or
was it changed along the way? Did the end-users of MERBoard need the
usability features supported by the architecture? Did they need even more
support? We are currently analyzing many aspects of the development
process, the implemented code, documentation, and actual user data during
the MER 2004 mission to construct a more formal case study of this
experience.

We also realize that a single case study cannot answer all questions
regarding our materials. We are actively soliciting additional development
groups wanting to explore their architecture designs from a usability
viewpoint to gain more insight into the extent of U&SA materials’
applicability and usefulness and to improve their design for the software
architects who are our users.

9. ACKNOWLEDGEMENTS

The authors would like to thank the MERBoard development team for
their willingness to participate in this research and for their insightful
feedback on the U&SA materials. The Computational Sciences Division at
NASA Ames Research Center provided support for MERBoard development
and the MERBoard team’s participation in our intervention. The High-
Dependability Computing Program (HDCP) provided funding for the
development of U&SA materials and through its testbed program provided
us access to the MERBoard project for the purposes of testing the materials.
Carnegie Mellon University’s Software Engineering Institute (SEI) provided
funding for the early development of U&SA via funding to Bonnie John as
well as continuing support for the work of Len Bass.

 30

10. REFERENCES

1. Bass, L., Clements, P., & Kazman, R. (1998). Software Architecture in Practice,
First Edition. Reading, Massachusetts: Addison-Wesley.

2. Bass, L., Clements, P., & Kazman, R. (2003). Software Architecture in Practice,
Second Edition. Reading, Massachusetts: Addison-Wesley.

3. Bass, L. & John, B. E. (2003) Linking usability to software architecture patterns
through general scenarios. Journal of Systems and Software, 66 (3), 187-197.

4. Bass, L. J, John, B. E. & Kates, J. (2001) Achieving Usability Through Software
Architecture. Carnegie Mellon University/Software Engineering Institute Technical
Report No. CMU/.SEI-2001-TR-005.

5. Bass, L., John, B. E., Juristo, N., Sanchez-Segura, M-I. (2004). Usability and
software architecture. Tutorial materials presented at the 26th International
Conference on Software Engineering, ICSE 2004 (Edinburgh, Scotland, May 23-28,
2004).

6. Beck, K. (1999). Extreme Programming Explained: Embrace Change. Boston,
Massachusetts: Addison-Wesley.

7. Bosch, J. & Juristo, N. (2003) Designing software architectures for usability.
Tutorial materials presented at the 25th International Conference on Software
Engineering, ICSE 2003 (Portland, Oregon, May 3-10, 2003).

8. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M. (1996). Pattern-
Oriented Software Architecture, Volume 1: A System of Patterns. John Wiley &
Sons.

9. Folmer, E. & Bosch, J. (2004) Architecting for usability. Journal of systems and
software (70), 1., pp 61-78.

10. Folmer, E., van Gurp, J., & Bosch, J. (2003) Investigating the relationship between
software architecture and usability. Software Process - Improvement & Practice:
Special Issue on Bridging the Process and Practice Gaps between Software
Engineering and Human Computer Interaction.

11. Fowler, M. (2003). UML Distilled: A Brief Guide to the Standard Object Modeling
Language, Third Edition. Reading, Massachusetts: Addison-Wesley.

12. Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1995). Design Patterns. Boston,
Massachusetts: Addison-Wesley.

13. Golden, E., John, B. E., & Bass, L. (2005), The value of a usability-supporting
architectural pattern in software architecture design: A controlled experiment.
Proceedings of the Intrenational Conference on Software Engineering, ICSE 2005,
(St. Louis, Missouri, 15-21 May, 2005

14. ISO 9241-11:1998, Ergonomic requirements for office work with visual display
terminals (VDTs) -- Part 11: Guidance on usability.

15. John, B. E., Bass, L., Juristo, N., Sanchez-Segura, M-I. (2004) Avoiding "We can't
change THAT!": Software Architecture and Usability. Tutorial materials presented
at CHI 2004 (Vienna, Austria, April 24-29, 2004).

16. John, B. E. & Bass, L. (2003) Avoiding "We can't change THAT!": Software
Architecture and Usability. Tutorial materials presented at CHI 2003 (Ft.
Lauderdale, FL, April 5-10, 2003).

17. John, B. E. & Bass, L. (2002) Avoiding "We can't change THAT!": Software
Architecture and Usability. Tutorial materials presented at CHI 2002 (Minneapolis,
MN, April 5-10, 2002).

18. John, B. E., Bass, L. J., Sanchez-Segura, M-I. & Adams, R. J. (2004) Bringing
usability concerns to the design of software architecture. Proceedings of The 9th

 31

IFIP Working Conference on Engineering for Human-Computer Interaction and the
11th International Workshop on Design, Specification and Verification of
Interactive Systems, (Hamburg, Germany, July 11-13, 2004).

19. Juristo, N, Lopez, M., Moreno, A. M., & Sanchez-Segura, M-I. (2003) Improving
software usability through architectural patterns. In Proceedings of the ICSE 2003
Workshop Bridging the Gaps Between Software Engineering and Human-Computer
Interaction. Portland (Oregon), USA, May 2003. pp. 12-19.

20. Kawakita, J: The original KJ-method. Kawakita Research Institute, Tokyo 1982.
21. Kazman, R., Klein, M., Clements, P. (2000). ATAM: Method for Architecture

Evaluation. CMU/SEI-2000-TR-004. Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University.

22. NASA Ames Research Center (2003). MERBoard User’s Guide. Moffet Field, CA.
23. Newman, W. & Lamming, M. (1995). Interactive System Design. Wokingham,

England: Addison-Wesley Publishing.
24. Nielsen, J. (1993). Usability Engineering. Boston, MA: Academic Press Inc.
25. Norman, D. A., (1983) Design rules based on analyses of human error.

Communications of the ACM. (New York: ACM Press) pp. 254-258.
26. Rosson, M. B., & Carroll, J. M. (1992) Getting around the task-artifact cycle: how

to make claims and design by scenario. ACM Transactions on Information Systems
10, (2) pp. 181 – 212.

27. Shneiderman, B. (1998). Designing the User Interface, Third Edition. Reading,
MA: Addison-Wesley.

28. Sun Microsystems, Inc. (2003). Model-View Controller. Java Blueprints. Retrieved
September 18th, 2003 from the World Wide Web:
http://java.sun.com/blueprints/patterns/MVC-detailed.html

29. Tollinger, I. McCurdy, M., Vera, A., & Tollinger, P. (2004) Collaborative
knowledge management supporting Mars mission scientists. In Proceedings of the
ACM Conference on Computer Supported Cooperative Work, CSCW 2004
(Chicago, Nov. 6-10, 2004).

30. Wirfs-Brock, R. & Mckean, A, Object Design: Roles, Responsibilities, and
Collaborations. Addison Wesley, Reading, Ma, 2003.

